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Abstract

A classical model of the Schr5dinger's wave packet is considered. The problem of

finding the energy levels corresponds to a classical manipulation game. It leads to

an approximate but non-perturbative method of finding the eigenvalues, exploring the

bifurcations of classical trajectories. The role of squeezing turns out decisive in the

generation of the discrete spectra.

1 The classical model of quantum systems.

The quantum theory devotes a lot of attention to the classical models of quantum phenom-

ena.. Much less attention to the quantum models of classical phenomena. Yet, such models

exist. Some classical processes can mimick the quantum laws. One of the most. provocative

examples was given by Avron and Simon in 1986 by explanaining the structure of the Saturn

rings in terms of the band spectrum of the SchrSdinger's operator [1](Fig. I). Their work

shares some epic qualities of Jonathan Swift [2] (something so enormous imitating something

so little!).

The analogy, though, is natural and has some antiquity [3]. Consider the 1-dimensional

SchrSdinger's equation:

1 d 2

2 dx 2 _b(z) -4-[V(x) - E]_b(x)= 0 (1)

with V(x), E,(x) and E real. Suppose, we are interested in the solutions of (1) for arbitrary

E C _, not necessarily belonging to the spectrum. Denote now the variable x by t and call it

time [3, 4, 5]; put a/so q = _,(t), p = d/(t). The equation (1) becomes:
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dq dp 2[V(t)- Elq (2)d-/= p' Z =

Note, that (2) is simply the pair of canonical equations for the classical variables q, p of

a classical oscillator with a time dependent ellastic constant. The Hamiltonian reads:

p2 q2

H(t) = 7 + g(t)-_ ,

The canonical trajectories of (3):

g(t) = 2[E- v(t)] (3)

q(t) (t E _) (4
q(t)= p(t)

'portrait' every detail of the SchrSdinger's wave packet 0(x) and its first derivative tb'(x)

This includes the phenomenon of the "classical spectral bands".
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Figure 1. Saturn rings, the macroscopic imitation of the spectral bands (An

imperfect image of Avron and Simon idea: the spectral bands of a cuasi-

periodic potential form a Cantor set).

Indeed, assunle V(t) is periodic or quasi-periodic. If E belongs to a spectral band of

tile SchrSdinger's operator, the wave flmctions (1) are bounded in x -+ -t-oo and so are

the trajectories of the classical oscillator (2-3). Thus, the spectral bands of V(t) define the

stability bands (trapped motions) of the classical system (2-3). In lurn, for E belonging to tl_e

resolvent set, the "act of creation" was incomplete on the quantum side: the wave functiol,s

(1) have no physical meaning. However, tile classical trajectories hawx they escape to oc

either for t ---++oo or I --+ -oc, painting the picture of a parametric r_'sonance, tlence, t h,'

resolvent set defines the instability regime (escape motions). This explains why the Sl)_'ctral

gaps determine the empty spaces in tile Saturn rings (Avron and Simon [I]). A tempta.ti_g

question arises: can there be a similar 'classical portrait' for tile discrete speclr_lm?
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2 "Classical point-spectrum".

Consider again the classical system (2-3), with E < 0 and with V(t) in form of a limited

potential well:

( <0 fora <t <b
v(Q =0 for t_<a or I > b (5)

The corresponding classical ttamiltonian:

p2

H(t) = -_ + [E- V(t)]q2 (6)

represents a rather simple mechanical system. The classical point is driven by a constant

repulsive potential, corrected by an "attractive episode" -V(t)q 2 (see Fig.2). The mot.ion

trajectory, in general, diverges either for t ---+ -oc or t --_ +cx_ (as the result of a. constant

repulsive term Eq 2 ). For some E, however, a very special dynamical phenomenon occurs:

the trajectory, departing from q= 0 at t = -oo, by a rare dynamical coincidence, returns

asimptotically to 0 for t _ +oc. This phenomenon, extremally unstable, as exceptional as

an eclipse, is our classical equivalent of a. bound state [_/,(x) --_ 0 for a" _ :t:oc] ie., lhe most

stable motion form in quantunl mechanics!

The "classical portrait", this time, has no astronomic magnitude: it represents ralher

a kind of classical sport game. This aspect is specially visible if V(t) is a sum of _-peaks:

V(t)=-cq6(t-tl -...-a,_(t-t,_),witha3 >0(j=l,2,...). The classicalHanliho,,ia,:

p2 '_
H(t) = T + Eq2 + E a)6(t- tj)q 2 (7)

j=l

then describes a point mass in a constant repulsive field, pertruhed by a sequence of atlraclive

pulses. Consider now a trajectory departing from q= 0 at. t = -oc. What typically happens

when the attractive pulses are over, is that the point must escape either to q= -cc or

q= +oc. Yet, for some exceptional E < 0, the kicks will provide to the mass point a.

momentum exactly sufficient to climb asimptotically to 0, against the repulsive forces. When

this happens, E is an eigenvalue of (1). The whole phenomenon resembles a ping-pong game

against the repulsive potential. The attractive kicks in (7) are an equivalent of the "ping-

pong rocket" and the "goal" of the game is to collocate the point at the very repulsion
center!

Note, that the picture permits one to guess the number of the bound states. Thus, e.g.,

for n = 1 (one kick), there is only one way (modulo proportionality) to return the escaping

point to zero. Henceforth, the single 6-well has exactly one bound state. For n = 2 (2 kicks),

the point can be returned in two (qualitatively different) ways corresponding to two different

values of E and two different bound states. For more peaks, or for continuous V(*), the game

complicates and to predict results, some geometry elements on the classical phase plane

are necessary.
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3 The bifurcations.

We shall assume below, that V(t) is a continuous real function, satisfying (5) [the 6 peaks

(7) are included as limiting cases].

One of the oldest observations of quantum mechanics is that the eigenvectors of (1) are

a kind of "recurrent phenomenon", tending to repeat itself as E grows. This fact can be

explained in several ways, but its simplest illustration is obtained in terms of the integral

trajectories of (2-3).

Since the evolution equations (2) are linear, the phase point (4) depends linearly on the

initial condition:

q(t)=u(t,a)q(a), (8)

where u(t, a) is a real 2x2 simplectic evolution matrix. The canonical equations (2) in terms

of (8) read:

d__u_u- 0 1 u(t) (9)
dt - -g(t) o

A(t)

For V(t) - 0 (t < a and t >=_b), (2) becomes an equation with constant coefficients which

can be explicitely solved:

{ en(t-')q(a) fort_<aq(t)
eA(t-Oq(b) for t _> b

where A is a constant 2 × 2 matrix:

(10)

1°11A= 21El 0

Note that A has a pair of real eigenvalues:

(11)

eigenvalues eigenvectors

1

e+= (12)

1)__ = -V/2 ) E e_= __

Thus, in absence of Y(t) (i.e. for t _ [a, b]), the motion on the phase plane 79 amounts to

a continuous squeezing: the direction e+ expands while e_ exponentially shrinks as t ---++cx_

(inversely for t ---+ -oo). The typical phase trajectory (2) diverges for both t ---+ -+-oc.

However, exceptional cases exist. If q(a) = Const × e+, then q(t) vanishes for t ---+ -oc, and

if q(b) = Const × e_, then q(t) vanishes for t ---++oc. The number E < 0 is an eigenvalue of

the Schrhdinger's operator, iffthere exists a canonical trajectory vanishing on both extremes

t ---+ 5=00. This can happen if and only if the evolution between t = a and t = b brings the

direction of e+ into that of e_, i.e:
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u(b,a)e+ = Const × e_ (13)

p

_envector

e_

q

_tvect_

Figure 2. The metamorphosis of the classical trajectory (2-3) for varying E

and fixed V(t) (qualitative picture). As E raises to zero from below, the defor-

mation due to the rotating term -V(t)q 2 expands cloekwisely around the phase

space origin, crossing several times the "shrinking axis" e_(E). At each new

intersection a bifurcation occurs, producing a new closed orbit interpretable as

an eigenvector of the SchrSdinger's equation (1). The trajectory transforma-

tions are pictured in the moving frame of the 'squeezing axis' and represent as

well the bifurcations which must occur for a fixed E < 0 and variable V(t).

To see the 'recurrent nature' of the phenomenon, consider an integral trajectory of (2)

with q(a) = Ce+ (i.e., departing from q(-e_) = 0) and observe how does it change for

varying E < 0. If V(t) - O, the trajectory escapes to infinity along the e+ direction. If V(t) <

0 in [a, b], the escape is corrected by a rotation around the phase space origin (typically

generated by the attractive oscillator Hamiltonians). For t > b, i.e., when the rotation

ceases, the deformation is squeezed back to zero, and the trajectory returns asimptotically

to the expanding axis e+ (see Fig.2). Now, as E grows (approaching zero from below),

the repulsion (squeezing) becomes weaker and the deformation caused by -V(t)q 2 grows,

tipically drawing a loop, till q(b) touches the e_-axis. When this happens, (13) is fulfilled

and the trajectory, instead of escaping to infinity, falls to zero, forming a closed orbit (an
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eigenvectorof (1)). As E still grows (and [ E I decreases) the deformation caused by

-V(t)q 2 drives the phase point q(b) across the e_-axis and the asimptotic picture suddenly

changes: the trajectory escapes to oc again, but this time in the direction -e+ (not +e+),

meaning the bifurcation (discontinuous change of the asimptotic angle by -Tr). If E still

rises (tending to E = 0), tile deformation expands clockwisely around the phase space origin,

intersecting several times the shrinking axis e_. Each time this happen, a new bifurcation

occurs (a discontinuous change of the asymptotic angle), giving birth to a new closed orbit

(next eigenvector) at tile exact bifurcation point (Fig.2).

Henceforth, the eigenvalues of (1) are the bifurcation values of E (i.e. the values for which

the trajectories of (2) change their asymptotic type). In order to bifurcate, the trajectories

must pass through a sequence of exceptional forms (closed orbits): this is wily there exist

spectra.. Can this help to find the spectral values? The difficulty of finding ttle bifllrcatioT_

values, of course, is the same as that of finding tile point, spectrum (the analytical sciences

are empty!). Yet, an advantage of our model (2-3) is, that it, turns attention to some new

methods till now neglected.

4 The angular Schrgdinger equation.

Since the vector norms are irrelevant, our condition (13) can be conveniently written in terms

of an angular coordinate. Indeed, define:

q=pcosa, p =psinct

The canonical equations (2) become:

(14)

/5 cos a - &psin a = psina (15)

psin +  pcos = 2[v(t) - Elp cos (16)

where _ and & mean the time derivatives. Curiously, the equation for the angular variable

separates. In fact, multiplying (15) by -sin ct, (16) by cosu and adding one gets the l-st

order differential equation for c_ alone:

&= 2[V(t)- E]cos 2 _-sin 2 c_ (17)

while permuting the operations, one arrives at:

_- 1ti -[V(t)- E + sin2a (18)

The angular equation (17) was found by Drukarev [6] and Franchetti [7] (though without

the geometric interpretation) and used to evaluate the phase shifts. Note, that the squeezing

directions e+ too can be defined in terms of the angles:

a+ (E) = -t- arctan _ [ E [ (19)

Now, our condition (13) means, that the evolution described by the lst-order eq.(17) in

the time interval [a,b] should transform the 'expansive direction' o_(a) = a+(E) into the
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'shrinking direction' a(b) = a_(E) + nTr (n = 0, 1,2,...). Introducing the defect angle F(E)

as a difference between the 'shrinking angle' a_(E) and the final angle a(b, E) obtained by

integrating (17), one can write the spectral condition (13) as:

r(E)=,__(E)-_(b,E)=n_r (n = 0,1,2,...) (20)

An immediate generalization of (20) is obtained for V(t) constant (though not necessarily

vanishing) for t ff (a,b):

{ V(a) for t _< a (21)V(t)
V(b) for t >_ b

The trajectory (2) has then two constant generators A(a) and A(b) for t < a and t _> b

and the formula (20) holds after substituting [ V(a)- El or IV(b)- E I instead of I E [ in

the expressions (19) for a+ and a_ respectively. Two elementary facts make the bifurcation

condition (20) specially efficient to determine the eigenvalues:

Observation 1. For a fixed V(t) and E < 0, the spectral angle F(E) is an increasing

function of E. (This is an elementary consequence of the Cauchy equation (17); see also [8]).

The monotonicity of F(E) permits one to interpolate easily, helping to find the points where

F(E) intersects the critical values F = nTr (n = 0,1,2,...).

Observation 2. The function F(E) is unstable and changes very abruptly when crossing

the sequence of critical values F = nr (n = 1, 2,...) (i.e. when E crosses spectral points).

Thus, even a little error in E in vecinity of an eigenvalue traduces itself into a visible effect in

F, improving the accuracy. This instability is caused by the fact that the energy eigenvalues

correspond to the orbit bifurcations where the final integration point _(b, E) deflects fast

when E crosses a bifurcation value. If the integration could yield _(+oo, E), F(E) would

be an exact step function (see also the observation in [9, p.274]).

As an example, we have considered the energy levels for the truncated 1-dimensional

oscillator potential:

, 2_2 I<o

5w x for Ix

v(x) =
1 22 i_>o_w' a for Ix

(22)

We have determined the angular function F(E), 0 < E < V(_), for w = 1, a = 8

integrating numerically (17) (see Fig.3), and obtaining the 8 energy levels for the oscillator

truncated at a = 4, all calculated with accuracy up to 10 -1°. The obtained eigenvalues are

1 (indeed, even the highest,very close to the first 8 levels of the exact oscillator, E,, = n +

and last eigenvalue of the truncated potential (22) differs rather little from the orthodox

E7 = 7.5).
Note the characteristic shape of F(E), with sharp steps helping to localize the energy

eigenvalues! The same spectral problem would be much more troublesome if approached

by the conventional perturbation calculus. (Even compared to Ritz method, our algorithm

shows some simplicity as there is no need to invent adequate classes of test functions!). More-

over, the same method can be used without difficulty to find the eigenvalues of arbitrarily
deformed wells.
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Figure 3. The defect angle F(E) = c_+ - c_(4, E). The intersections of this

"stepping" function with the lines n × 7r give the eigenvalues of the Schr6dinger

problem.

The method, till now, concerns the limited potential wells. However, the generalization

for unlimited and/or singular wells is already reported (it involves the substitution of the

constant angles a+(E) by their variable analogues [5, 8]). The (generalized) spectral function

F(E) shows the same "step behaviour" permitting to determine spectra with a high accuracy.

It is interesting to notice that all the structure elements which we have introduced were

basically known since long time, though very seldom used. Thus, the idea about the classical

model of (1) (with x substituted by t ) was considered as far back as 1970 (or even earlier;

see the discussion in [3]). The angular equation (17) was found by Drukarev [6] and then by

Franchetti [7] (though without geometric pictures) and was used to examine the phase shifts.

The idea that the angles determine the discrete spectra is quite old (see e.g. discussions in

[10]) though is usually focused on the phase of the complez wave function, and mixed up with

the WKB approximation. The implications of the classical angle were known to Calogero (see

[11, p.82] and [9, p.274]), though Calogero was not interested in the numerical algorithms!

The idea that the eigenvalues are bifurcations is as old (though usually contemplated without

paying attention to the geometry of 79 , and the role of squeezing in producing the bifurcation).

It seems also worth noticing, that the definition of the bifurcation does not require the

linearit!l of the evolution equations (2). Hence, the definition of the spectrum via bifurcations

might be a natural answer to the intriguing problem of how to extend tile concept of spectrum

to non-linear variants of the Schrfdinger's operator (see, e.g. discussions in [12]). Some work

in this direction is being recently carried [13].
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